Colloquia & Guest Speakers


Optoelectronic Spin Physics in 2D Materials

Dr. John Schaibley, University of Washington

Wednesday, January 20, 2016
2:00 p.m.
Goergen 101


Atomically thin crystals, such as layered transition metal dichalcogenides, provide a new platform to investigate light-matter interactions in low dimensional solid state systems. In these materials, the band extrema occur at two inequivalent momentum space valleys at the edges of the Brillouin zone. The valley degree of freedom, i.e., the location of an electron in momentum space, can therefore serve as a binary valley pseudospin, similar to spin in spintronics. Importantly, a valley dependent optical selection rule allows for optical control of the valley pseudospin. In this talk, I will discuss two optically driven valley pseudospin systems based on excitons (bound electron-hole pairs) in 2D semiconductors. First, I will discuss the physics of 2D heterostructures composed of stacked monolayers of MoSe2 and WSe2. These heterostructures host interlayer valley excitons where the electrons and holes are located in different layers. These spatially indirect excitons exhibit long lifetimes and valley polarization times which are promising for valley based information applications and for investigating long-range exciton transport phenomena. Second, I will discuss single excitons localized to defects in monolayer WSe2, which are shown to be single photon emitters. I will discuss the valley physics of these localized valley excitons as well as their potential quantum technology applications and unique opportunities to study the hyperfine interaction in solid state systems.


John Schaibley was born and grew up in Indianapolis, Indiana. He attended Purdue University, where he received B.S. degrees in physics and mathematics, graduating Phi Beta Kappa with highest distinction. He did his graduate work at the University of Michigan under the guidance of Professor Duncan Steel, where his Ph.D. research focused on solid state spin-photon interfaces and quantum optics with single InAs quantum dots. At the University of Michigan, he received an M.S. in optics and a Ph.D. in physics. During his graduate work, he received the American Association of Physics Teachers Outstanding Teaching Award, as well as the Peter Franken Award, which is awarded to an outstanding physics graduate student. He is currently doing a postdoc at the University of Washington under Professor Xiaodong Xu, investigating fundamental light-matter interactions and optical spin-valley effects in 2D materials and heterostructures.

Location: Goergen Hall, Room 101

Refreshments will be served.