Quantum Information

Irfan Ali Khan, Curtis Broadbent, John Howell
Colin O’Sullivan-Hale, Bob Boyd,

University of Rochester
Thanks to

- ARDA
- Army Research Office
- DARPA
- DOD MURI
- University of Rochester
- NSF
- Research Corporation
Overview

- Introduction: Continuously Entangled Biphotons
 - Entanglement
 - Schmidt Decomposition: Information Eigenmodes
- Experiments
 - Pixel Entanglement in Transverse Modes
 - Time-energy
Single Particle Continuous Variable Uncertainty Relations

- Continuous observables position and momentum (or e.g., field quadratures)

\[
\left\langle (\Delta \hat{x})^2 \right\rangle \left\langle (\Delta \hat{p})^2 \right\rangle \geq \frac{\hbar^2}{4}
\]

1. Heisenberg’s uncertainty relation.
2. Closely related to the space-bandwidth product in imaging.
3. Continuous quantum cryptography
EPR: Continuous Entanglement

Einstein, Podolsky and Rosen questioned the completeness of wavefunction description of Quantum Mechanics in their gedanken experiment [Phys Rev 47, 777 (1935)].

Suppose we have two quantum particles 1 and 2 with their positions governed by

\[\Psi = \int \int A(x_1, x_2) |x_1, x_2\rangle dx_1 dx_2 \]

\[A(x_1, x_2) = \delta(x_1 - x_2) \]

\[\tilde{A}(k_1, k_2) = \frac{1}{2\pi} \int e^{-ik_1 x_1} e^{-ik_2 x_2} A(x_1, x_2) dx_1 dx_2 \]

\[\tilde{A}(k_1, k_2) = \delta(k_1 + k_2) \]
EPR entanglement (70 years)

EPR: no interaction at distant locations. particle 2 must be in both a position and momentum eigenstate, which violates Heisenberg’s uncertainty principle $\Delta x \Delta k < 1/2$.

Position $\delta(x_1-x_2)$

Momentum $\delta(k_1+k_2)$

Interaction

Particle 2

Particle 1

Einstein, Albert
Separability

\[\rho = \sum_i \rho_{1i} \otimes \rho_{2i} \]

General Statement of Separability

- **Continuous systems**

\[\langle (\Delta \hat{x}_{12})^2 \rangle \langle (\Delta \hat{p}_{12})^2 \rangle \geq \hbar^2 \]

\[\hat{x}_{12} = \hat{x}_1 - \hat{x}_2 \quad \hat{p}_{12} = \hat{p}_1 + \hat{p}_2 \]

Duan et al, PRL 84, 2722 (2000)
Simon, PRL 84, 2726 (2000)
Entangled statistics

- Uncertainty sum or product vanish for perfect maximal entanglement.

$$\left\langle (\Delta \hat{x}_{12})^2 \right\rangle \left\langle (\Delta \hat{p}_{12})^2 \right\rangle = 0$$

Howell, Bennink, Bentley and Boyd
Schmidt Decomposition

- Schmidt Number
 - Number of information eigenmodes
 - Discrete (even for continuous distributions), because of finite trace
 - Bipartite

C. K. Law and J. H. Eberly
Schmidt Decomposition

- **Discrete**

\[|\Psi\rangle = \frac{1}{\sqrt{2}} (|H_1, V_2\rangle - |V_1, H_2\rangle) \]

Schmidt Number: K=2

- **Continuous**

Ratio of single particle uncertainty over two-particle uncertainty

\[K = \frac{\Delta x_1}{\Delta x_{12}} \geq \frac{1}{2\Delta x_{12}\Delta k_{12}} \approx \frac{1}{EPR} \]
EPR Entanglement: Previous Work

- Squeezed light fields (quadrature squeezed correlations)
 - Reid and Drummond, PRL 60, 2731 (1988)
 - Ou et al, PRL 68, 3663 (1992)
- Collective atomic spin variables (spin observables)
 - Julsgaard, Nature 413, 400 (2001)
- Modern rephrasing of continuous entanglement
 - Duan et al, PRL 84, 2722 (2000)
 - Simon, PRL 84, 2726 (2000)
- Discrete Entanglement (violation of separability bounds)
 - Hofman and Takeuchi PRA 68 032103
Transverse Momentum-Position Entanglement

- Ghost Imaging and Ghost Diffraction
 - Pittman et al, PRA 52, R3429 (1995)
- Classical Ghost imaging and Ghost Diffraction
 - Bennink et al, PRL 89, 113601 (2002)
- Noncommuting observables
 - Gatti et al, PRL 90, 133603 (2003)
 - Equivalent to demonstrating Rotational Invariance, but for continuous variables.
Transverse Momentum-Position Entanglement

- Created?
 - Used first order (two-photon) spontaneous parametric down conversion.
 - One photon downconverts into two photons.
 - Momentum conserved (momentum correlation)
 - Photons emitted from a small birth place region (position correlation)
- Thin crystal, paraxial and narrow filter approximation

\[
\left| \Psi \right> = \left| \text{vac} \right> + N \times \int d\vec{k}_s \int d\vec{k}_i E(\vec{k}_i + \vec{k}_s) \text{Sinc} \left(\frac{\Delta k_z L}{2} \right) \left| 1, k_i \right> \left| 1, k_s \right>
\]

Angular Spectrum of pump

Phase matching condition
Momentum Correlation
Quantum vs Classical ghost imaging

Anti correlated distance from optic axis
Position Correlation

BBO crystal

Pump Laser Beam 1mm

Pair birth place 10’s μm
Position Correlation

Collinearly Phase matched type-II in forward direction: Perfect phase matching

Imperfect Phase matching

$\Delta k_z L = 1/2$ gives an approximate size to the birth place.
Position Correlation

- Both Photons created inside birthplace region.
- Photons measured in near field (image planes).

![Diagram of position correlation with correlated distances from optic axis](image)
Experiments

Imaging Layout

Fourier Imaging Layout

Point Spread Functions

\(\Delta x_{12} = 0.027 \text{ mm} \)

\(\Delta p_{12} = 3.7 \text{ kHz/mm} \)
EPR Result

- Inferred uncertainty product for particle 2 is approximately

 Single-Particle variance product

 \[(\Delta x)^2 (\Delta p)^2 \geq \hbar^2 / 4 \]

 Conditional Variance product

 \[(\Delta x_2)^2 \bigg|_{x_1} (\Delta p_2)^2 \bigg|_{p_1} \approx 0.004 \hbar^2 \]
Pixel Entanglement: Discretizing continuous entanglement

Same Basis: correlated or anticorrelated measurements.
(3 possible coincidence measurements)

Different basis: uncorrelated measurements (9 possible coincidence measurements).

Generalization of Ekert cryptographic protocol to qudits of arbitrary dimension d ($d=3$)

Ray Beausoleil
Pixel Entanglement Results

Position-Position

![Graph showing normalized coincidence rate for Position-Position series.]

O’sullivan Hale, Ali Khan, Boyd and Howell
PRL (in press)

Momentum-Momentum

![Graph showing normalized coincidence rate for Momentum-Momentum series.]

Pixel Entanglement

normalized coincidence rate

xk

kx
6 pixel array
Generalization to large state spaces

Position Correlation

Alice’s Detector Bob’s Detector

Momentum Correlation

Alice’s Detector Bob’s Detector

Current limit to dimensionality is due to detectors.

Generalization to arbitrarily large APD arrays.

Reminder: APD arrays inside single photon emission cones.
Time-Energy: Why?

- Quantum Communication
 - Transverse entanglement requires wavefront preservation: multimode
 - Time-Energy: Single Mode (fiber transportable)
 - Very High Bandwidth (qubits vs. large d qudits)
Time-Energy Correlations

- **Time Correlations (100’s of fs)**
 - Need ultra fast detectors
 - HOM dip is local measurement
 - Use Franson Interferometer to measure fourth order correlations: space-like separated detection $x^2 > (ct)^2$

- **Energy Correlations (MHz set by pump)**
 - Grating spectral decomposition

- **Large Potential Information Content**
 - Bandwidth of Down Conversion divided by the Bandwidth of the Pump Laser

$$K = \frac{\Delta \omega_{\text{PDC}}}{\Delta \omega_{\text{pump}}} \approx \frac{10 \text{THz}}{1 \text{MHz}} = 10^7$$

Information Eigenmodes

C. K. Law and J. H. Eberly
Time Energy Entanglement

Diagram showing a high resolution monochromator with a grating, L_1, 50μm slit, 1m telescope, and collection & detection. Connected through CW laser and Type-II BBO with dichroic mirror and PBS. Fiber coupled energy-time entangled photon source.
Energy-Energy Correlation

- Energy Energy correlations set by phase matching conditions
- Energy conservation yields high energy correlations for CW pump

\[\omega_{\text{pump}} = \omega_i + \omega_s \]

\[\Delta \omega_{\text{pump}} \sim 1 \text{ MHz} \]

\[\Delta \omega_{\text{pdc}} \sim 10 \text{ THz} \]

idler

signal
Energy-Energy Correlations

\[\Phi(\omega_s, \omega_i) \propto \exp \left(\frac{- (\omega_s + \omega_i)^2}{2(\Delta \omega_p)^2} \right) \]
Type II time-time correlations

1. Horizontal, Vertical different velocity (birefringence)
2. Spontaneous emission equally likely at any point in crystal

\[\Omega(t_1, t_2) = R(t_1 - t_2) \]
Temporal Correlation of Franson Interferometer

Output ports of Michelson with postselection of short-short and long long

\[
|\Psi(t_1, t_2)\rangle = \int dt_1 \int dt_2 A(t_1, t_2) [a_1^\dagger(t_1) a_2^\dagger(t_2) + e^{i\phi_{12}} a_1^\dagger(t_1 - \tau_1) a_2^\dagger(t_2 - \tau_2)] |0\rangle
\]

\[
g_{1,2} = \int_{-\infty}^{\infty} dt_1 \int_{-\infty}^{\infty} dt_2 \langle \Psi | a_1^\dagger(t_1) a_2^\dagger(t_2) a_1(t_1) a_2(t_2) |\Psi\rangle
\]

Repeated use of equal time boson commutator relation and normal ordering

Franson Envelope

\[
g_{1,2} = 1 - \cos(\phi_{12}) \Lambda(\tau_1 - \tau_2)
\]

Hong-Ou-Mandel dip

\[
g_{1,2} = 1 - \Lambda(\tau_1 - \tau_2)
\]
Time-Energy Results

100 fs RMS

Time-Time Correlations

0.048 nm RMS

Energy-Energy Correlations
Knife Edge Sweep
Experimental Apparatus

Curtis Broadbent

Irfan Ali Khan
Time-Energy Results

\[\langle (\Delta E_{12})^2 \rangle \langle (\Delta t_{12})^2 \rangle \approx 0.00022\hbar^2 \]

- Measured Time-Energy Variance Product
- Single Mode (fiber transportable)
- Limitations
 - Low flux per spectral window
 - Limited spectral resolving power: Could violate variance product by many more orders of magnitude
Conclusion

- Showed discrete and continuous entanglement
- Violated EPR bound (security measure) by two orders of magnitude
- Demonstrated Pixel Entanglement (correlated pixels in nonorthogonal bases).
 - Quantum information with large Hilbert spaces
- Fiber transportable giant entanglement
 - Long distance capabilities
 - Up to 10 million pixels (10 million entangled states)
 - Working on a fiber based large qudit cryptosystem