High-Order Modulation Instability

Sean J. Bentley, John E. Heebner, and Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, NY USA.

2002 OSA Annual Meeting

October 3, 2002

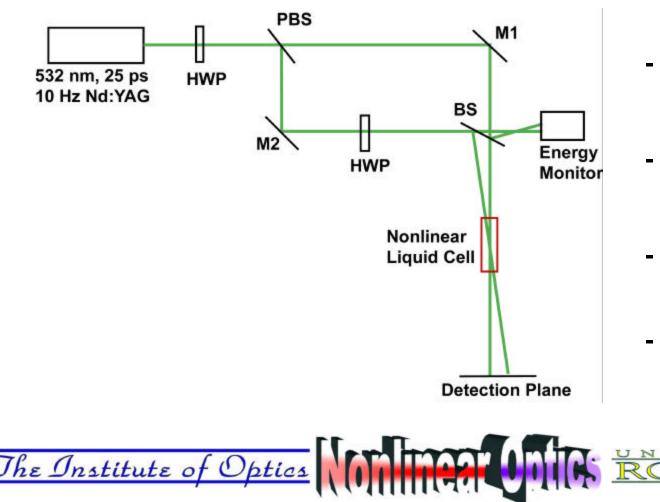
Acknowledgement: Elizabeth M. Hill

Outline

- Background & Motivation
- Experimental Configurations
- 1-D Spot Arrays: Experiment and Simulation
- 2-D Cones: Experiment
- Conclusions & Future Work

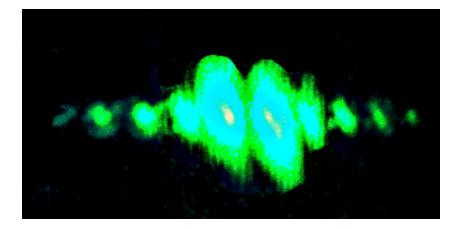
Background

- Experimental & theoretical studies of pattern generation from two intersecting beams:
 - Kauranen et al., JOSA B 10, 2298 (1993) Theoretical treatment
 - Chalupczak et al., Opt. Comm. 111, 613 (1994) Experimental treatment in barium vapor
 - Many, many more!
- Use of two intersecting beams to reduce filamentation
 - Maillotte et al., Opt. Comm. 109, 265 (1994)



Motivation

- Reduction of laser beam filamentation
- Generation of quantum states of light
- Fundamental interest in nonlinear optical pattern formation



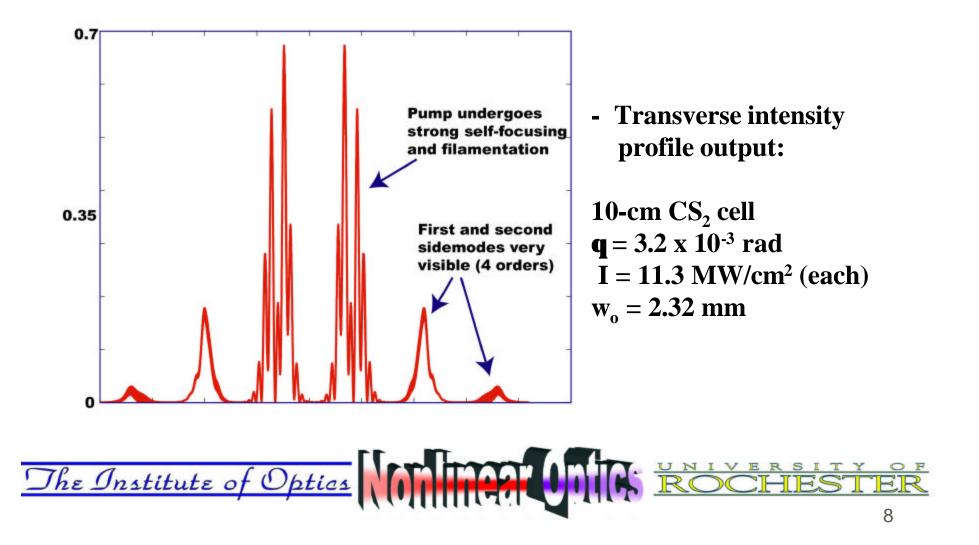
Experimental Configurations

- Used 3-cm and 10-cm cells
- Used CS₂, CCl₄, and toluene
- Pulse intensities
 ~ 1-80 MW/cm²
- Crossing angles ~ 0.003-0.04 rad

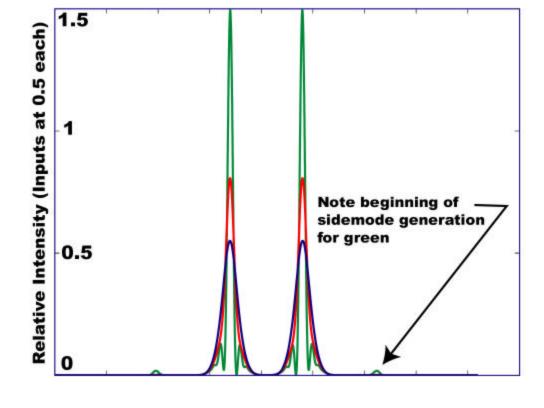
1-D Spot Arrays: Experimental Results

- At small angles (~ 0.003 rad), a 1-D array of spots is observed
- Many orders of self-diffraction were visible (12+; 8 pictured)
- Properties of the spots (number, intensity, etc) critically dependent on properties of input beams
- Clearly observable thresholds

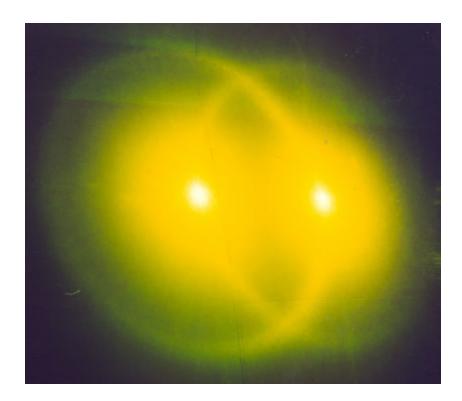
1-D Spot Arrays: Numerical Simulations


• Modeled experiment using split-step Fourier method to solve NLSE numerically

$$\frac{\partial A}{\partial z} = \frac{i}{2k_o} \nabla_{\perp}^2 A + i\boldsymbol{g} |A|^2 A \quad \text{where} \quad \boldsymbol{g} \equiv \frac{n_o n_2 \boldsymbol{w}_o}{2\boldsymbol{p}}$$


- Results for 1-D case in close agreement with experiment
- Using simulation to predict interesting aspects for further experimental studies

1-D Spot Arrays: Numerical Simulations

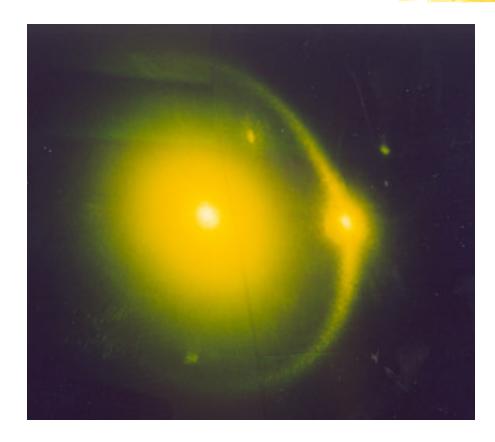

1-D Spot Arrays: Numerical Simulations

- Blue: 2.8 MW/cm²
- Red: 5.7 MW/cm²
- Green: 8.5 MW/cm²
- As intensity increases, first see self-focusing, then filamentation and spot generation.

2-D Cones: Experimental Results

- At "large" angles (~ 0.03 rad), cones of light are observed
- The cones are centered about one beam and pass through the other
- Properties of the cones are primarily dependent upon beam which they intersect
- Clearly observable thresholds

2-D Cones: Experimental Results

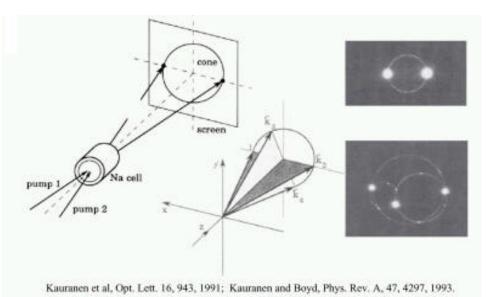

• Threshold measured for multiple materials, cell lengths, and spots sizes and remained constant in nonlinear phase:

$$f_{NL} = n_2 Ilk_o$$

$$f_{NL}^{th} \sim 0.19 rad \qquad f_{NL}^{pics} \sim 0.75 rad$$

- Threshold independent of angle over large range
- Cones persisted down to ~ 15 mrad pump seperation

2-D Cones: Experimental Results



- Case where one beam (right) highly attenuated
- Note that left beam acts as pump and right beam acts as seed for the generated cone
- Polarization follows seed, not pump

Other Experimental Regimes

• In the intermediate angular range (~ 5-15 mrad for this case), two-beam conical emission has been seen in vapors:

Should TBCE be expected in nonlinear liquids as well?

 ${\bullet}$

Other Experimental Regimes

- What about larger (> 40 mrad) and smaller (< 3 mrad)?
 - Larger angles will reduce interaction length, where self-action effects would likely dominate
 - Smaller angles add experimental difficulties, but may or may not show interesting features
- Unbalanced pumping effects?
 - Preliminary simulations show interesting results
- Pump polarization effects also being explored

Conclusions & Future Work

- Generated variety of patterns from two-beam interactions in nonlinear liquids
- Patterns strongly dependent on experimental parameters
- Can accurately model 1-D patterns numerical--need to extend modeling to 2-D case
- Explore quantum correlations in patterns

