

Information velocity in ultra-slow and fast light media

Matthew S. Bigelow, Nick N. Lepeshkin, and Robert W. Boyd

The Institute of Optics, University of Rochester, Rochester, NY 14627 Monday, May 17, 2004

San Francisco, IQEC 2004 – IMP1

Review of ultra-slow light.

- Review superluminal light.
- Understanding information velocity.
- Our results.
- Summary.

Outline

Review of Ultra-Slow Light

Light speed reduction to 17 metres per second in an ultracold atomic gas

Lene Vestergaard Hau⁺†, S. E. Harris[‡], Zachary Dutton⁺† & Cyrus H. Behroozi^{*}§

* Rowland Institute for Science, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, USA

 † Department of Physics, § Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
 ‡ Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA

Nature 397, 594 1999

Published in Physical Review Letters **90**, 113903 (2003).

Superluminal Light

- Resonant Absorber
 - S. Chu and S. Wong, Phys. Rev. Lett. 48, 738 (1982).

EIA

- v_g = -c/23,000: A. V. Akulshin *et al.*, Phys. Rev. Lett. **83**, 4277
- v_g = -c/14,400: K. Kim *et al.*, Phys^{ugul} Rev. A 68, 013810 (2003).
 Sain-assisted complete the second sec
- Gain-assisted superluminal light propagation
 - L.J. Wang, A. Kuzmich, and A. Dogariu, Nature **406**, 277 (2000).

 $v_{a} = -c/310$ 50 25 20 40 2 2.5 30 25 В A 20 20 62(+/-1) ns 5.5 6 6.5 10 0₀ 2 6 8 10 4 Time (us)

Published in Science 301, 200 (2003).

Alexandrite Crystal Structure

Information Velocity

- What is a signal?
 - Brillouin: "A <u>signal</u> is a short isolated succession of wavelets, with the system at rest before the signal arrived and also after it has passed." – L. Brillouin (1960), p. 7.
 - Finite Duration = Infinite Spectrum!
- What is information (or signal) velocity?
 - Brillouin:
 - Normal Dispersion: v_s = v_g
 - Anomalous Dispersion: $v_s \le c$
 - Sommerfeld: "It can be proven that the signal velocity is exactly equal to c if we assume the observer to be equipped with a detector of infinite sensitivity, and this is true for normal or anomalous dispersion, for isotropic or anisotropic medium, that may or may not contain conduction electrons."

Information Velocity in a Fast Light Medium.

- M.D. Stenner, D.J. Gauthier, and M.I. Neifeld, Nature 425, 695 (2003).
- Pulses are not distinguishable "early."

• $V_i \leq C$

Information Velocity in a Fast Light Medium.

Finite Signal Duration = Infinite Spectrum

- Physical interpretation: Front travels through medium before a polarization can build up.
 - Sommerfeld Precursor: High frequency components
 - Brillouin Precursor: Low frequency components

Can you detect a precursor?

- Microwaves P. Plesko and I. Palócz, Phys. Rev. Lett. 22, 1201 (1967).
- Optical Precursors in Semiconductors J. Aaviksoo, J. Kuhl, and K. Ploog, Phys. Rev. A 44, R5353 (1991).

Issue of Bandwidth – Fast Light Material

 $50 \ \mu s$ pulse in ruby

Issue of Bandwidth – Slow Light Material

Summary

- We investigated the effect that pulse length has on pulse propagation.
- Pulses are distorted whenever the pulse bandwidth becomes comparable to the region of large dispersion.
- If the pulse bandwidth too large, the distortion disappears and so does the delay.
- Bandwidth must be considered in any discussion on information velocity.

Acknowledgements

- Collaborators:
 - Nick Lepeshkin
 - Petros Zerom
 - Aaron Schweinsberg
 - Robert Boyd
- Discussions:
 - Dan Gauthier
- Funding:
 - U.S. Department of Energy/Horton Fellowship
 - Air Force Office of Scientific Research
 - Army Research Office
 - Office of Naval Research