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Interest in Slow Light

Intrigue: Can (group) refractive index really be 106?

Fundamentals of optical physics

Optical delay lines, optical storage, optical memories

Implications for quantum information

And what about fast light (v > c or negative)?

Boyd and Gauthier, “Slow and Fast Light,” in Progress in Optics, 43, 2002.





Switch to Overheads



Determination of the Velocity of Light*
 “Astronomical” Methods

Observed an apparent variation of up to 22 minutes in the 
orbital period of the satellite Io in its orbit about Jupiter.  

Römer (1676)  First evidence that velocity of light is finite!

Deduced that c = 225,000 km/sec

(Actually, light transit time from
sun to earth is just over 8 minutes,
and c = 299,793 km/sec)

*See, for instance, Jenkins and White, 1976.



Determination of the Velocity of Light
 Astronomical Methods

Bradley (1727);  Aberration of star light.
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v(earth) ≈ 30 km/s
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     α = 20.5 arcsec

Confirmation of the finite velocity of light.



Determination of the Velocity of Light
 Laboratory Methods

Fizeau (1849)  Time-of-flight method

720 teeth in wheel

maximum transmission
 at 25 revolutions/sec

c = L/T = 320,000 km/s



Determination of the Velocity of Light
 Laboratory Methods

Michelson (1926);  Improved time of flight method.

Rotating octagonal mirror

c = 299,296 km/s (or 299,298 km/s)



Velocity of Light in Matter

Foucault (1850)  Velocity of light in water.

Is v = c/n or nc?

Foucault finds that
light travels more
slowly in water!

rotating
mirror



Velocity of Light in Moving Matter

Fizeau (1859);  Velocity of light in flowing water.
V = 700 cm/sec;  L = 150 cm;  displacement of 0.5 fringe.

Modern theory:  relativistic addition of velocities

v = c /n +V
1+ (V / c )(1 / n)

≈
c
n
+V 1− 1

n2










Fresnel “drag” coefficient



Approaches to Slow Light Propagation
•  Use of quantum coherence (to modify the spectral
    dependence of the atomic response)

e.g., electromagnetically induced transparency

•  Use of artificial materials (to modify the optical
    properties at the macroscopic level)

e.g., photonic crystals (strong spectral variation of
refractive index occurs near edge of photonic
bandgap)









Slow Light in Atomic Vapors

Slow light propagation in atomic vapors, facilitated by
quantum coherence effects, has been successfully
observed by

Hau and Harris

Welch and Scully

Budker

and others





Review of Slow-Light Fundamentals

slow-light medium, ng >> 1

Tg =
L

vg
=
Lng
c

ng = n+ ω
dn

dω

Tdel = Tg − L/c =
L

c
(ng − 1)

group velocity:  

group index:

group delay:

controllable delay:

vg =
c

ng

L

To make controllable delay as large as possible:
	 •  make L as large as possible (reduce residual absorption)
	 •  maximize the group index



Systems Considerations: Maximum Slow-Light Time Delay

Proposed applications: controllable optical delay lines
optical buffers, true time delay for synthetic aperture radar.

Key figure of merit:
normalized time delay = total time delay / input pulse duration

≈ information storage capacity of medium

“Slow light”:   group velocities < 10-6 c !

Best result to date:  delay by 4 pulse lengths (Kasapi et al. 1995)

But data packets used in telecommunications contain ≈ 103 bits

What are the prospects for obtaining slow-light delay lines with 
103 bits capacity?



[1] Boyd, Gauthier, Gaeta, and Willner, Phys. Rev. A 71, 023801, 2005. 

Our model [1] includes gvd and spectral reshaping of pulses.

Modeling of Maximum Delay of Slow-Light Systems

We conclude that there are no fundamental limitations 
to the maximum fractional pulse delay.

However, there are serious practical  limitations, 
primarily associated with residual absorption.

Strategy:  pump harder to saturate more fully to reduce 
residual absorption.



Slow Light and Optical Buffers

All-Optical Switch Use Optical Buffering to Resolve 
Data-Packet Contention 

input
ports

output
portsswitch

But what happens if two
data packets arrive 
simultaneously? 

slow-light
medium

Controllable slow light for optical 
buffering can dramatically increase
system performance.  

Daniel Blumenthal,  UC  Santa Barbara;   Alexander Gaeta, Cornell University;  Daniel Gauthier, Duke 
University;  Alan Willner, University of Southern California; Robert Boyd, John Howell, University of Rochester



Challenge/Goal

Slow light in a room-temperature solid-state material.

Solution:  Slow light enabled by coherent population 
	 	 oscillations (a quantum coherence effect that is 
	 	 relatively insensitive to dephasing processes).



Slow Light in Ruby

Recall that ng = n + ω(dn/dω).    Need a large dn/dω.    (How?)

Kramers-Kronig relations:
      Want a very narrow feature in absorption line.

Well-known “trick” for doing so:

Make use of spectral holes due to population oscillations.

Hole-burning in a homogeneously broadened line;  requires T  << T2 1.

1/T2 1/T1

inhomogeneously
broadened medium

homogeneously
broadened medium
(or inhomogeneously 
broadened)

PRL 90,113903(2003).



Spectral Holes in Homogeneously
Broadened Materials

Occurs only in collisionally broadened media (T2 << T1)

Boyd, Raymer, Narum and Harter, Phys. Rev. A24, 411, 1981.

pump-probe detuning (units of 1/T2)



Argon Ion Laser
Ruby

40 cm

Function
Generator

EO modulator

Digital
Oscilloscope

Pinhole

Reference Detector
or

Signal Detector

Slow Light Experimental Setup

7.25-cm-long ruby laser rod (pink ruby) 
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512 µs
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No pulse distortion! 

v = 140 m/s

ng = 2 x 106



Matt Bigelow and Nick Lepeshkin in the Lab



Advantages of Coherent Population
Oscillations for Slow Light

Works in solids
Works at room temperature
Insensitive of dephasing processes
Laser need not be frequency stabilized
Works with single beam (self-delayed)
Delay can be controlled through input intensity



Alexandrite Displays both Saturable and Reverse-Saturable Absorption  

T1,m = 260 µs
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•  Both slow and fast propagation observed in alexandrite

Bigelow, Lepeshkin, and Boyd, Science 301, 200 (2003).

boyd



 Inverse-Saturable Absorption Produces 
Superluminal Propagation in Alexandrite

At 476 nm, alexandrite is an inverse saturable absorber

Negative time delay of 50 ms correponds to a velocity of -800 m/s 

M. Bigelow, N. Lepeshkin, and RWB, Science, 2003



Numerical Modeling of Pulse Propagation
Through Slow and Fast-Light Media

Numerically integrate the paraxial wave equation

∂A
∂z

− 1
vg

∂A
∂t

= 0

and plot A(z,t) versus distance z.

Assume an input pulse with a Gaussian temporal profile.

Study three cases:

Slow light   vg = 0.5 c

Fast light   vg = 5 c   and  vg = -2 c



Pulse Propagation through a Slow-Light
Medium (ng = 2,  vg = 0.5 c)




Pulse Propagation through a Fast-Light
Medium (ng = .2, vg = 5 c)




Pulse Propagation through a Fast-Light
Medium (ng = -.5, vg = -2 c)
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Are these predictions physical? 
(We simply postulated a negative group velocity) 

Consider a causal medium, for which Re n and Im n obey KK relations
Treat a gain doublet, which leads to superluminal effects*

* see also Chiao, Steinberg, Wang, Kuzmich, Gauthier, etc.  



Superluminal Pulse Propagation through a Causal Medium

= (2 ) 1.1  MHz A = 50 / s
=  (2 ) 6 MHz =  half frequency separation of gain lines

( ) =
A

( 0 ) i
+

A
( 0+ ) i

ng = − 642     L = 2.9 m              pulse duration =  10 μs

− i χNR




Slow and Fast Light in an Erbium Doped Fiber Amplifier

6 ms

outin

•  Fiber geometry allows long propagation length
•  Saturable gain or loss possible depending on
   pump intensity
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Schweinsberg, Lepeshkin, Bigelow, Boyd, and Jarabo



Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier
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We time-resolve the propagation 
of the pulse as a function of 
position along the erbium-
doped fiber.

Procedure
 •  cutback method
 •  couplers embedded in fiber

1550 nm laser ISO
80/20
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980 nm laser
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Experimental Results:  Backward Propagation in Erbium-Doped Fiber




Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier
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Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier

Summary:  

“Backwards” propagation is a realizable physical effect.



Slow Light in SC Quantum Dot Structures

3 ps

PbS Quantum Dots  (2.9 nm diameter)  in liquid solution

Excite with 16 ps pulses at 795 nm;  observe 3 ps delay 

30 ps response time (literature value)



 Diode
Laser Fiber Amplifier
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Slow-Light via Stimulated Brillouin Scattering 
•  Rapid spectral variation of the refractive response associated 
      with SBS gain leads to slow light propagation
•  Supports bandwidth of 100 MHz, large group delays
•  Even faster modulation for SRS

in out

 typical data

Okawachi, Bigelow, Sharping, Zhu, Schweinsberg, Gauthier, Boyd, and Gaeta Phys. Rev. Lett. 94, 153902 (2005).  
Related results reported by Song, González Herráez and Thévenaz, Optics Express 13, 83 (2005).



Summary

Slow-light techniques hold great promise for applications in 
telecom and quantum information processing

Good progress being made in devloping new slow-light techniques
and applications

Different methods under development possess complementary 
regimes of usefullness



Research in Quantum Imaging

Can images be formed with higher resolution or
better sensitivity through use of quantum states of light?

Can we "beat" the Rayleigh criterion?

Quantum states of light:  For instance, squeezed light or
entangled beams of light. 

boyd



PDC

photodetector array

"bucket" detectorobject to be imaged

coincidence 
circuitry

Ghost (Coincidence) Imaging

 •  Obvious applicability to remote sensing!

entangled photon pair

•  Is this a purely quantum mechanical process?
Strekalov et al., Phys. Rev. Lett. 74, 3600 (1995).
Pittman et al., Phys. Rev. A 52 R3429 (1995).
Abouraddy et al., Phys. Rev. Lett. 87, 123602 (2001).
Bennink, Bentley, and Boyd, Phys. Rev. Lett. 89 113601 (2002).
Bennink, Bentley, Boyd, and Howell, PRL 92 033601 (2004)
Gatti, Brambilla, and Lugiato, PRL 90 133603 (2003)
Gatti, Brambilla, Bache, and Lugiato, PRL 93 093602 (2003)



  Progress in Quantum Lithography 

Robert W. Boyd,  Sean J. Bentley, 
Hye Jeong Chang, and Malcolm N. O’Sullivan-Hale

Institute of Optics, University of Rochester, 
Rochester NY,USA



PDC

50/50
TPA

phase shift  φ

Quantum Lithography

Boto et al., Phys. Rev. Lett. 85, 2733, 2000.

•  Entangled photons can be used to form an interference 
    pattern with detail finer than the Rayleigh limit
•  Process “in reverse” performs sub-Rayleigh microscopy, etc.

("al." includes Jon Dowling)

•  Resolution ≈ λ / 2N, where N = number of entangled photons



Quantum Lithography: Easier Said Than Done

Need an N-photon recording material
For proof-of-principle studies, can use

N-th-harmonic generator, correlation 
circuitry, N-photon photodetector.

For actual implementation, use ????
Maybe best bet is UV lithographic
material excited in the visible or a
broad bandgap material such as
PMMA excited by multiphoton
absorption.

Need an intense source of individual biphotons (Inconsistency?)
Maybe a high-gain OPA provides the best tradeoff between

•

•

3PA in PMMA
breaks chemical 
bond, modifying 
optical properties.

high intensity and required quantum statistics



Non-Quantum Quantum Lithography

beam spliter

simulated
N-photon 
absorber

prism

translation 
    stage

   10-Hz, 25 ps 
1064 nm Nd:YAG

computer

   CCD 
camera

N-harmonic
 generator

imaging
   Lens

spectral
  filters

N-photon 
absorber

φk (c)

N=1, M=1

N=2, M=1

N=2, M=2

Concept:  average M 
shots with the phase 
of shot k given by 
2πk/M

S. J. Bentley and R.W. Boyd, Optics Express, 12, 5735 (2004). 



Spatial Resolution of Various Systems

•  Linear optical medium
E = 1 + cos kx

•  Two-photon absorbing medium, classical light

E = (1 + cos kx)2 = 1  +  2 cos kx  +  cos2 kx

= 3/2  +  2 cos kx  +  (1/2) cos 2kx
•  Two-photon absorbing medium, entangled photons

E = 1 + cos 2kx

where k = 2(ω/c) sin θ

θ
θ



Demonstration of Fringes Written into PMMA

N-photon absorber

θ θ

θ = 70 degrees
write wavelength = 800 nm
pulse energy = 130 µJ per beam
pulse duration = 120 fs
period = λ / (2 sin θ) = 425 nm

PMMA on glass substrate
develop for 10 sec in MBIK
rinse 30 sec in deionized water

(N = 3 ?)

AFM

PMMA is a standard 
lithographic material



N-photon absorber

θ θ

θ = 70 degrees
two pulses with 180 deg phase shift
write wavelength = 800 nm
pulse energy = 90 µJ per beam
fundamental period = λ / (2 sin θ) = 425 nm
period of written grating = 212 nm

PMMA on glass substrate
develop for 10 sec in MBIK
rinse 30 sec in deionized water

Demonstration of Sub-Rayleigh Fringes (Period = λ/4)



Significance of PMMA Grating Results

•  Provides an actual demonstration of sub-Rayleigh 
   resolution by the phase-shifted grating method

•  Demonstrates an N-photon absorber with adequate 
   resolution to be of use in true quantum lithography



Quantum Lithography Prospects

Quantum lithography (as initially proposed by Dowling)
has a good chance of becoming a reality.

Classically simulated quantum lithography may be a
realistic alternative approach, and one that is much more
readily implemented.





Thank you for your attention!

Our results are posted on the web at:

http://www.optics.rochester.edu/~boyd




