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Interest in Slow Light

Fundamentals of optical physics

Intrigue: Can (group) refractive index really be 106?

Optical delay lines, optical storage, optical memories

Implications for quantum information



Slow Light

group velocity  ≠≠≠≠  phase velocity









Slow Light in Atomic Media

Slow light propagation in atomic media (vapors and
BEC), facilitated by quantum coherence effects, has
been successfully observed by many groups.



Challenge/Goal

Slow light in room-temperature solid-state material.

•   Slow light in room temperature ruby

(facilitated by a novel quantum coherence effect)

•    Slow light in a structured waveguide



Slow Light in Ruby

Need a large dn/dw.    (How?)

Kramers-Kronig relations:
      Want a very narrow absorption line.

Well-known (to the few people how know it
well) how to do so:

Make use of “spectral holes” due to
population oscillations.

Hole-burning in a homogeneously
broadened line;  requires T2 << T1.

1/T2 1/T1

inhomogeneously 
broadened medium

homogeneously 
broadened medium
(or inhomogeneously 
broadened)

PRL 90,113903(2003); see also news story in Nature.
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Spectral Holes in Homogeneously
Broadened Materials

Occurs only in collisionally broadened media (T2 << T1)

Boyd, Raymer, Narum and Harter, Phys. Rev. A24, 411, 1981.





Argon Ion Laser
Ruby

f = 40 cm

Function Generator

EO modulator

Digital

Oscilloscope

f = 7.5 cm

Diffuser

Reference Detector

Experimental Setup Used to Observe Slow Light in Ruby

7.25 cm ruby laser rod (pink ruby)
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For 1.2 ms delay, v = 60 m/s and ng = 5 x 106



512 µs
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Gaussian Pulse Propagation Through Ruby

No pulse distortion! 

v = 140 m/s

ng = 2 x 106



Matt Bigelow and Nick Lepeshkin in the Lab



Comparison of University of Rochester 
and University of Arizona

Bob and Ruby
Hyatt and Galina



Alexandrite Displays both Saturable 
and Inverse-Saturable Absorption
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 Inverse-Saturable Absorption Produces 
Superluminal Propagation in Alexandrite

At 476 nm, alexandrite is an inverse saturable absorber

Negative time delay of 50 ms correponds to a veleocity of -800 m/s 

M. Bigelow, N. Lepeshkin, and RWB, accepted for publication, 2003



Slow and Fast Light --What Next?

Longer fractional delay
(saturate deeper; propagate farther)

Find material with faster response
(technique works with shorter pulses)



Artificial Materials for Nonlinear Optics
Artifical materials can produce
	 Large nonlinear optical response
	 Large dispersive effects

Examples
Fiber/waveguide Bragg gratings
PBG materials
CROW devices (Yariv et al.)
SCISSOR devices



    Weak pulses spread because of dispersion
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      But intense pulses form solitons through balance of 
	 	 	 	 	 	 	 	 	 	 				                 dispersion and nonlinearity.

Shows slow-light, tailored dispersion, and enhanced nonlinearity

NLO of SCISSOR Devices
(Side-Coupled Integrated Spaced Sequence of Resonators)

 

Optical solitons described by nonlinear Schrodinger equation
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GaAs

AlxGa1-xAs
(x = 0.4)

Microdisk Resonator Design 

All dimensions in microns
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Photonic Device Fabrication Procedure

PMMA

AlGaAs-GaAs

    structure

Oxide (SiO2)

AlGaAs-GaAs

    structure

Oxide (SiO2)

PMMA

AlGaAs-GaAs

    structure

PMMA

Oxide (SiO2)

(2) Deposit oxide

AlGaAs-GaAs

    structure

(1) MBE growth

(3) Spin-coat e-beam resist

(4) Pattern inverse with

      e-beam & develop
(6) Remove PMMA

(7) CAIBE etch AlGaAs-GaAs

(8) Strip oxide

AlGaAs-GaAs

    structure
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    structure
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(5) RIE etch oxide
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Disk Resonator and Optical Waveguide in PMMA Resist

AFM



All-Pass Racetrack Microresonator

Thanks to P.T. Ho and R. Grover, U. Maryland, for help with final etch.

10 micron diameter

2.5 micron height

100 nanometer gap

500 nanometer guide width



5 microns 100 nanometer
gaps

Five-Cell SCISSOR with Tap Channel

500 nanometer
guides

2.5 micron
height



10 microns

~100 nanometer
gaps

Resonator-Enhanced Mach-Zehnder Interferometers
 

500 nanometer
guides

2.5 micron
height



Laboratory Characterization
of Photonic  Structures

•  Characterization of fiber ring-resonator devices
(Proof of principle studies)

•  Characterization of nanofabricated devices



Fiber-Resonator Optical Delay Line
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F = 51

Transmission Characteristics of Fiber Ring Resonator
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Laboratory Characterization
of Photonic  Structures

•  Characterization of fiber ring-resonator devices
(Proof of principle studies)

•  Characterization of nanofabricated devices



Microresonator-Based Add-Drop Filter
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Phase Characteristics of Micro-Ring Resonator
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Summary

Demonstration of slow light propagation in ruby and
superluminal light propagation in alexandrite

Argue that artificial materials hold great promise for
     applications in photonics because of

     • large controllable nonlinear response

     • large dispersion controllable in magnitude and sign





Thank you for your attention. 

 



Photonic Structures --What Next?
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Performance of SCISSOR as Optical Delay Line



Frequency Dependence of GVD and SPM Coefficients
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Fundamental Soliton

Weak Pulse
pulse

disperses
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Soliton Propagation
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Dark Solitons 
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SCISSOR system also supports the propagation of dark solitons.
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Phase Characteristics of Fiber Ring Resonator
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Phase Characteristics of Fiber Ring Resonator
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"Fast" (Superluminal) Light in SCISSOR Structures
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