Distortion-Reduced Pulse-Train Propagation with Large Delay in a Triple Gain Media

Zhimin Shi¹, Robert W. Boyd¹, Zhaoming Zhu², Daniel J. Gauthier², Ravi Pant³, Michael D. Stenner³;⁴ and Mark A. Neifeld³;⁴

¹The Institute of Optics, University of Rochester
url: http://www.optics.rochester.edu/~boyd

²Department of Physics, and The Fitzpatrick Center for Photonics and Communications Systems, Duke University

³Optical Sciences Center, University of Arizona
⁴Department of Electrical and Computer Engineering, University of Arizona
Outline

- Motivation
- Principles
- Experimental Setup
- Results and Analysis
- Summary
Motivation

- Slow Light for telecommunication
 - Optical delay-line / buffer
 - Data re-synchronization
 - Jitter correction

- Slow Light based on Stimulated Brillouin Scattering (SBS) effect
 - Wide wavelength range
 - Good dynamic controllability
 - Con: limited by bandwidth and distortion

Principles: single gain line

\[\tilde{n}(\nu) = 1 + \frac{g_0 \gamma}{2k_0} \frac{1}{\nu + i\gamma} \]

- \(\nu \) -- detuning from the line center
- \(g_0 \) -- amplitude gain coefficient
- \(\gamma \) -- Brillouin gain linewidth

Gain coefficient

Group index
Principles: double gain line

\[\tilde{n}(\nu) = 1 + \frac{g_0 \gamma}{2k_0} \left\{ \frac{1}{(\nu-\delta)+i\gamma} + \frac{1}{(\nu+\delta)+i\gamma} \right\} \]

Gain coefficient

Group index

Principles: triple gain line

\[\tilde{n}(\nu) = 1 + \frac{g_0 \gamma}{2k_0} \left\{ \frac{1}{(\nu-\delta)+i\gamma} + \frac{1}{(\nu+\delta)+i\gamma} + \frac{r}{\nu+i\gamma} \right\} \]

Gain coefficient

Group index
Principles: triple gain line

- Free parameters for a triple-gain-line medium:
 - half-separation δ
 - Side line gain peak A_1
 - Peak ratio $r = \frac{A_2}{A_1}$
Principles: triple gain line

- Gain line separation and peak ratio are optimized for each bandwidth using the following 3 criteria
 - Maximal amplitude gain
 \[G_{\text{max}} < 3.5 \]
 - Phase distortion factor
 \[D_p \equiv (\max\{n_{\text{dev}}\} - \min\{n_{\text{dev}}\})k_0L/2\pi < 0.05 \]
 \[n_{\text{dev}} \equiv n(\nu) - n(0) - \nu n(1) \]
 - Gain distortion factor
 \[D_g \equiv (G_{\text{max}} - G_{\text{min}}) / (G_{\text{max}} + G_{\text{min}}) < 0.05 \]
Experimental Setup

Schematic diagram for the multi-gain-line SBS experiment

TL: tunable laser; **IS**: isolator; **FPC**: fiber polarization controller; **MZM**: Mach-Zehnder modulator; **AFG**: arbitrary function generator; **SMF**: single mode fiber; **VOA**: variable optical attenuator.
Pump amplitude modulation

\[E_{\text{out, pump}} = E_0 \cos \alpha \left(-V_{\pi/2} + \frac{r}{2} V_1 + V_1 \cos 2\pi \delta t \right) \]
Experimental Setup

- SBS Gain is controlled by changing the gain of the EDFA

- Delay is measured by comparing signal output with/without pump
Results: Optimum configuration

Half separation

- Optimum value for δ

Peak ratio

- Optimum value for peak ratio r

Graphs show the relationship between Δν/γ and the optimum values for δ and peak ratio r, comparing triple-gain-line and double-gain-line configurations.
Results: Maximum delay

\[FD \equiv \Delta T 2\pi \Delta \nu \]
Results: Maximum delay

gain distortion limited only (double gain line)

gain limited only

gain distortion limited only (triple gain line)

double gain line

maximal fractional delay

$\Delta v/\gamma$

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Results: Eye-diagram

\[\Delta \nu = 1.6 \gamma \]
Summary

- Multiple gain lines can be produced by biased amplitude modulation on the pump field in a SBS slow light system.

- Using a triple-gain-line system, fractional delays up to 1.5 (>30% improvement than a double-gain-line system) can be achieved with very small distortion.

- In this demonstration, $\gamma = 23.5$ MHz. However, it has been shown that γ can be increased up to 12 GHz using a spectrally broadened pump\(^1\).

Acknowledgement

Thank you for your attention!