Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor

Petros Zerom, Matthew S. Bigelow† and Robert W. Boyd

The Institute of Optics, University of Rochester,
Rochester, New York 14627

† Now at Laser and Optics Research Center, Department of Physics,
United States Air Force Academy, Colorado 80840

OSA Annual Meeting, Rochester, New York, October 10-14, 2004
Outline

- Introduction
- Motivation
- Experimental setup
- Numerical simulations
- Results
- Conclusion and future work
Laguerre-Gaussian beams \((LG_{m,p})\) have ring-shaped intensity pattern and an \(e^{im\phi}\) field dependence.

- Carry orbital angular momentum (OAM) of \(m\hbar\) per photon
Background

- Rings with $m \leq 2$ studied in different media experimentally
- Possible to stabilize high-power solitons ($m = 1, 2$) in competing cubic-quintic and quadratic medium [1, 2]
- In all nonlinear models, it’s believed that any $(2 + 1)$D solitons with $m \geq 3$ are unstable [3]
- Ring-shaped solitons are shown to suffer from strong azimuthal instability in saturable self-focusing media
- Break up into $2m$ filaments and drift away tangentially from the original ring [4]

Motivation

The objective for doing the experiment was two-fold:

- To study experimentally the azimuthal modulational instability suffered by ring beams which carry orbital angular momentum in a fully saturable medium (hot, dense sodium vapor).

- To study the stability of high-power Laguerre-Gaussian modes which carry orbital angular momentum in sodium vapor.
Experimental setup

- FWHM ~ 15 ns
- Conversion efficiency of the computer-generated hologram (CGH) into the first diffraction order $\sim 5\%$
- Beam diameter $\sim 50 \, \mu m$
- Typical number density $\sim 8 \times 10^{14} \, cm^{-3}$, effective interaction length ~ 5 cm
Numerical simulation

Propagation Equation

\[\frac{\partial A(x, y, z)}{\partial z} = \frac{i}{2k} \nabla^2 A(x, y, z) + \left(-\alpha + ik\Delta n \right) A(x, y, z). \]

- Laser wavelength detuning \(\Delta \approx 40 - 47 \) GHz from the \(D_2 \) resonance line of sodium.
- The susceptibility \(\chi \) is given by

\[\chi = -\frac{\alpha_0(0)c}{4\pi\omega_{ba}} \frac{\Delta T_2 - i}{1 + \Delta^2 T_2^2 + |E|^2/|E_s|^2} \]
$m = 1$ case

- Input beam $A_{1,0}$
- 40.6 GHz detuned to the blue side of D_2
- Input energy = 76 nJ (beam filaments at a relatively low energy due to large nonlinearity)
- Two spots over pulse energies: 65 – 710 nJ
- No intentional perturbation put on the beam experimentally
- 1.5\% random amplitude noise (numerical simulation)
\[m = 2 \text{ case} \]

- Input beam \(A_{2,0} \)
- 46.7 GHz detuning, Input energy = 234 nJ
- Input beam breaks up into four filaments
- Result repeatable over pulse energies: 0.2 – 1.3 \(\mu \)J
- 1.5\% random amplitude noise
- Poor beam quality could lead to other than four spots
\(m = 3 \) case

- Input beam \(A_{3,0} \)
- 46.7 GHz detuned to the blue side (\(D_2 \) line)
- Input energy = 359 nJ
- Six spots over pulse energies: 0.35 – 2.5 \(\mu \)J
- 1.0% random amplitude noise
- Occasional five or seven spots seen due to misalignment of optics/light scattering off dust on optical surfaces
Higher power beam propagation

(a) $m = 1$, input energy = 9.1 μJ

(b) $m = 2$, input energy = 24.1 μJ

(c) $m = 3$, input energy = 6.63 μJ

• Beam almost completely saturating the nonlinearity, and filamentation suppressed
Conclusion and future work

- Ring beams with orbital angular momentum $m\hbar$ tend to break up into $2m$ filaments
- $2m \pm 1$ filaments seen for imperfect input beam
- Numerical propagation of (randomly) perturbed Laguerre-Gaussian input beams through (Doppler broadened) two level atom gives good agreement with experimental results
- Stable beams observed at higher input power levels
 - Stability of vector solitons carrying equal but opposite OAM through sodium vapor [5]