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Instabilities and Chaos in the Polarizations of Counterpropagating Light Fields
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We show that the polarizations of counterpropagating light waves in an isotropic Kerr medium are
temporally unstable when their total intensity exceeds a certain threshold value. Periodic and chaotic
temporal behavior can occur in the output polarizations and under certain conditions also in the output

intensities.
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Intense counterpropagating laser beams are required
for the operation of useful nonlinear optical interactions
such as optical bistability and phase conjugation by de-
generate four-wave mixing. However, recent theoretical
work has indicated that there exist regimes in which such
fields are not stable. Silberberg and Bar-Joseph! have
predicted that in the scalar approximation, counterpro-
pagating waves interacting in a nonlinear Kerr medium
characterized by noninstantaneous response can undergo
oscillatory and chaotic temporal evolution. This instabil-
ity results from the gain of a four-wave mixing process
and the distributed feedback that results from scattering
off the grating formed by the interference of the counter-
propagating waves; most other examples of chaos in non-
linear optics have required external feedback.? Theoreti-
cal studies have also recently shown that the steady-state
polarizations of counterpropagating fields in a nonlinear
Kerr medium can be multivalued? as well as possessing a
chaotic spatial distribution.* Kaplan® has shown that
for an isotropic nonlinear Kerr medium there exist in
steady state four eigenarrangements for the polarizations
that remain invariant upon propagation through the ma-
terial. Wabnitz and Gregory® have pointed out that only
two of these eigenpolarizations are spatially stable in
steady state; the stable arrangements are those with both
fields linearly polarized with parallel polarizations and
both fields circularly polarized and corotating. Prelimi-
nary numerical simulations of the temporal behavior of
this system have been conducted,’ but to our knowledge
no one has previously investigated the temporal stability
of these spatially stable eigenpolarizations.

In this Letter we examine the temporal stability of the
polarizations and intensities of counterpropagating waves
in an isotropic Kerr medium for the case in which the in-
put polarizations are one of the eigenarrangements that
are known to be spatially stable.’ For definiteness, we
concentrate on the case in which the two input polariza-
tions are linear and paraliel.® We allow the field ampli-
tudes to be time dependent and allow the medium to pos-
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sess a noninstantaneous response. We find that when the
input intensities exceed a certain threshold value the out-
put beams become temporally unstable. This instability
can lead to abrupt switching of the state of polarization
of the output beams or can produce oscillatory or chaotic
fluctuations of the output polarizations and under some
circumstances also of the intensities.

We consider the geometry shown in the inset to Fig. 1.
The total complex electric field in the medium can be
decomposed into its x and y Cartesian components as

E=IE,(z,)%+E, (z,)le ~. )

Each component consists of a forward- and backward-
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FIG. 1. (a) Total input intensity at the threshold for insta-
bility and (b) frequency of oscillation plotted as functions of
the forward-to-backward input intensities for t=L/c and for

7K L/c. Oscillatory instabilities are predicted for input ratios
greater than 2.7.

© 1987 The American Physical Society



VOLUME 58, NUMBER 23 PHYSICAL REVIEW LETTERS 8 JUNE 1987
traveling part such that
Ey=E{(z,)e +Eb(z,1)e ~k, @

where i =x,y, k =w/c, and c is the speed of light in the medium. The complex nonlinear polarization can similarly be
represented as P=(P,X+ P,¥)exp(—iwt), where each component of the polarization amplitude can be expressed in
terms of a field-dependent susceptibility tensor X;; and P; =3 ;= , X;;E;. For a lossless Kerr medium, Z;; is assumed to
satisfy the Debye relaxation equation

TGX{j/at +2i= (4—-B)(E-E* )6ij +B(E,-E;E,~*Ej), 3)
where 7 is the response time of the medium and 4 and B are real constants that characterize the mechanism that gives
rise to the nonlinear Kerr effect. In the limit < L/c, where L is the length of the medium, the susceptibility tensor at-
tains its steady-state value® given by the right-hand side of Eq. (3). The electric field and the nonlinear polarization
are substituted into the driven wave equation, and the slowly varying-envelope approximation is made to yield the cou-
pled amplitude equations

[5@— + ii]g{u 4k 3 LPES+aEIOEN, @)
z 4 j=x.y

where X;(})) and Xi_(ji 2ik) are the dc and = 2ik spatial Fourier components of X;;, respectively. What distinguishes our
treatment from that of previous workers!>$ is that we take into account both the vector nature of the fields and the
nonzero response time of the medium.

We now assume that the input fields are linearly polarized in the y direction, in which case the steady-state solution
for the amplitudes of the forward- and backward-traveling waves is

EL4(z) =0, (52)
EfS () =1} Rexpl + ik (A4 +B) Usp+21y p)z], (5b)

where I;= | Ef (0)| 2 and I, = | EL (L) | %. In previous work that treated the temporal stability of optical systems,
the amplitude of the optical ficld was perturbed. However, we wish to investigate the temporal stability of the field po-
larization, and thus we perturb the steady-state solution [Eq. (5)] by assuming the presence of a small time-dependent

field polarized in the x direction so that the total complex field can be represented as

E(z,0) ={lf1(2)eM+£2(z)e* 1R+ Ef s Jle!®s ~o0 + {[b, (2)eM+by(2)e* 1R+ EL i flei ~he oD, )

with the boundary conditions f1,2(0) =b; (L) =0. This
perturbed field is substituted into the coupled nonlinear
equations (3) and (4) which yield a set of linearized
equations for the perturbation amplitudes. These linear-
ized equations are entirely uncoupled from the equations
for the perturbation amplitudes polarized in the y direc-
tion derived in the scalar-wave theory.! The equations
for f1,2 and b;,; along with the boundary conditions al-
low us to solve analytically for the boundary of instabili-
ty. In order to do this, we set Re(A) =0 and solve for the
threshold intensity and the frequency offset Im(A) at
which the perturbation occurs. We find that the thresh-
old for instability increases as the ratio B/A decreases
and that only in the limit B/A4— 0 is there no solution
with Re(A) > 0 corresponding to a solution that grows in
time. In this Letter, we assume in all of our numerical
examples the case of a medium for which B/A4 =3. The
total input threshold intensity for instability for such a
medium is plotted as a function of the ratio I,/I, in Fig.
1(a) for the cases T<L/c and t=L/c. The region
above each of the curves is that for which the perturba-
tion is temporally unstable. The oscillation frequency
[Im(A)]1 of the perturbation at threshold is plotted in
Fig. 1(b). We see that for input pump intensity ratios

less than 2.7, this polarization instability is dc in nature
[Im(x) =01 for both t<L/c and t=L/c. For larger
values of the pump imbalance ratio, the steady-state
solution [Eq. (5)] undergoes a Hopf bifurcation [Im(1)
#0]. Note that even in the limit of relatively small
backward intensities (I7/I, > 10.0), the threshold for in-
stability is considerably less than k(4 +B)I;L =15 nor-
mally required for single-beam stimulated scattering in-
volving only the forward wave.!® A similar effect for
stimulated Brillouin has been discussed by Zel’dovich. !!
In order to determine the full dynamical behavior in
the region where instability is predicted, we have numer-
ically integrated the coupled nonlinear equations (3) and
(4) in both space and time using the method of charac-
teristics. - We ramp the input fields on adiabatically to
the desired steady-state input intensity and hold them at
this value. Figure 2(a) shows the time evolution for the
polarization state of the forward-traveling wave for the
case where Iy =1I,. We find that when the input intensi-
ties exceed the threshold value shown in Fig. 1(a), the
steady-state solution [Eq. (5)] is no longer temporally
stable and the output polarizations switch to a new
steady-state value. The forward and backward output
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FIG. 2. (a) Temporal evolution of the polarization of the
transmitted forward-traveling wave for the case of input waves
with parallel linear polarizations and equal input intensities
whose values [k(4+B)(I;+1I,)L =1.7] are just above the
threshold for instability shown in Fig. 1(a). The output polar-
ization remains linear, but is rotated through an angle 9 with
respect to the input polarization. (b) Absolute value of the ro-
tation angle plotted as a function of the total input intensity.

intensities remain constant and the output polarizations
remain linearly polarized but rotated through an angle 8
with respect to the y axis. This angle can be positive or
negative depending on which direction the perturbative
noise drives the system. We have plotted in Fig. 2(b) the
absolute value of the output angle 6 as a function of the
normalized input intensity. A bifurcation occurs in
the steady-state solution for |@| at k(4+B)U,+1,)L
== 1.58 as predicted by our stability analysis [Fig. 1(a)].
For the case of equal pump intensities and for total input
intensities below 2.8, this stable steady-state behavior is
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FIG. 3. Chaotic temporal evolution of (a) the total
transmitted intensity and (b) the intensity of the y-polarization

component for the forward-traveling wave for r=L/c, equal
pump intensities, and k(4 +B)I;L =6.
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the same regardless of the medium response time. In the
limit << L/¢, we find that at higher input intensities this
branch eventually becomes unstable and the polarization
state switches to another stable branch.

When the response time is of the order of the transit
time, there exists for the case of balanced pumping a
second instability threshold above which both the polar-
ization and the intensity can exhibit oscillatory and
chaotic temporal behavior. Our analysis is unable to
predict the onset of this new instability because of the
complicated steady-state distribution of the pump fields
above the first instability threshold. However, from our
numerical simulations we are able to determine an ap-
proximate value of k(4+B)(;+I,)L~2.8 for this
second threshold when r=L/¢, which is why the curve
shown in Fig. 2(b) terminates at this value of the abscis-

-sa. For a total normalized intensity just above this

second threshold value, both the polarization and the to-
tal intensity oscillate periodically in time. This threshold
intensity of 2.8 is smaller than that of 4.0 predicted by
the scalar-wave theory and suggests that the scalar insta-
bility may be unobservable unless B/4— 0. At higher
intensity (Fig. 3), the output polarization and intensity
fluctuate in time in an apparently chaotic fashion. We
have analyzed the time series using standard methods!2
and found that it yields a positive order-two Renyi entro-
py, which implies that the temporal evolution is chaotic
in the strict sense.

The gain-feedback mechanism that leads to the oscil-
latory and chaotic instability discussed above (i.e., for
7=L/c) is analogous to that which leads to the instabili-
ty predicted by Silberberg and Bar-Joseph, except that in
our case a tensor nonlinear response grating rather than
a scalar grating produces the distributed feedback.
However, our stability analysis (see Fig. 1) implies that
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FIG. 4. Temporal evolution of the total transmitted intensi-
ty and the intensity of the y-polarization component for the
forward-traveling wave for the case of unequal input intensities
(Is/Iy=3) and t<L/c. (a) For k(4 +B)U;+1I,)L =3, the
system shows an oscillatory instability in its polarization and
(b) for k(A4 +B)(I;+1Iy)L =6 it shows a chaotic instability.
In each case, the total transmitted intensity is constant in time.
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when the input waves are unequal in intensity, fluctuat-
ing temporal behavior can result even for < L/¢, in
which limit the gain-feedback mechanism for instability
cannot occur. For a pump imbalance of 3 and for a total
pump intensity above the threshold value, the output po-
larization oscillates in time [Fig. 4(a)]l and at even
higher input intensities becomes chaotic [Fig. 4(b)]. The
characteristic frequency of oscillation is of the order of
¢/L, which suggests that the mechanism which drives
this instability is related to transit-time effects and not to
gain at the frequency 1/t coupled with distributed feed-
back.

In summary, we have shown that in isotropic nonlinear
Kerr media with B0, temporal instabilities and chaotic
behavior can occur in the polarizations of counterpro-
pagating waves even when the input fields constitute one
of the spatially stable polarization configurations.
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