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Quantum Noise in Phase Conjugation
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We show by means of a quantum electrodynamic calculation that excess noise is inherent in the pro-
cess of optical phase conjugation, both in that the state of the field leaving a phase-conjugate mirror can
always be described classically (i.e., its phase-space density is positive semidefinite) and in that the fluc-
tuations in the generated field are always greater than those predicted by Poisson statistics. Except in
special cases, quantum noise imposes a limitation on the ability of phase conjugation to remove the

effects of aberrations.

PACS numbers: 42.65.Hw, 42.50.Dv, 42.50.Kb-

Optical phase conjugation is a technique that has
proved effective for the elimination of aberrations im-
parted on an optical wave front.’? However, there
are certain processes that can limit the performance
of phase-conjugate mirrors (PCM’s). For example,
Agarwal, Friberg, and Wolf> have shown that a limita-
tion to the aberration-correcting ability of phase conju-
gation exists even for the case of a PCM that is ideal in
the sense that it produces no noise and returns precisely
the phase conjugate of the incident field. Specifically,
these authors show that for an aberrator in the form of a
lossless scatterer the incident wave front will be recon-
structed perfectly only if the aberrator produces no back-
scattering or if the phase-conjugate reflectivity is equal
to unity. The performance of PCM’s can also be degrad-
ed by fluctuations of the phase-conjugate signal. These
fluctuations can result from instabilities in the specific
nonlinear optical interaction used to produce the phase-
conjugate signal* or can result from noise intrinsic to the
phase-conjugation process.

In this Letter, we show by means of a quantum elec-
trodynamic calculation that the phase-conjugation pro-
cess is inherently noisy. We show that, for any state of
the incident field, the statistical properties of the
reflected field can always be described by a classical dis-
tribution function regardless of the state of the input
field and that the reflected field possesses super-Poisson-
ian phonon statistics. When an aberrator, which we
model as a lossless scatterer, is placed in front of the
PCM, additional fluctuations can arise because of the
coupling of vacuum modes to the reconstructed-field
modes.

We first consider the case in which a single-mode field
is incident on a phase-conjugate mirror. We represent
this field in the scalar approximation as

Ei(r,t) =Cael®ro) 1 a. )

where & denotes the photon annihilation operator of the
incident-field mode and C = —i(hw/2¢0V) /2 where € is
the permittivity of free space and V is the quantization
volume. The field leaving the PCM is similarly repre-

sented as
E (r,t)=C*be!"kr—o) L q 2

where b represents the annihilation operator for the
reflected mode. As photon operators, & and b and their
Hermitean adjoints 4" and b7 must obey the canonical
commutation relations® [3,4T1=1[6,6"1=1. In the clas-
sical description of the phase-conjugation process, the
operators 4 and b are replaced by c-numbers that are re-
lated by b =va™, where v denotes the amplitude reflec-
tivity of the PCM. However, direct calculation shows
that in the quantum-mechanical treatment the phase-
conjugation process cannot be described solely through
the relation b=va", since this relationship is incompati-
ble with the commutation relations. In order to maintain
the commutation relations, we postulate that the photon
operators are related through’~’

A

b=va'+IL, (3)

where L represents a Langevin noxse operator that obeys
the commutation relatlon [£,L71=]v|2+1 and satisfies
the conditions (L)=(LT)=0. For the gase of a PCM
based on degenerate four-wave mixing,®° the Langevin
noise operator can be identified with the amplified vacu-
um mode entering through the open rear port of the
four-wave mixer. As in the case of degenerate four-wave
mixing, we also assume that the expectation value of any
normally ordered plroduct of powers of L and L1 is zero
and that L and & are uncorrelated. The present treat-
ment based on considerations of commutation relations
of the optical field shows that the presence of this noise
source is required for any PCM regardless of the physi-
cal mechanism leading to phase conjugation.

We now use Eq. (3) to calculate the statistical proper-
ties of the field generated by the PCM. We use the diag-
onal coherent-state representation'®!! for the density
operator pp of the reflected field mode:

Pb =f¢b(ﬂ) |8)p|dB, )
where ¢; () is the phase-space density. The phase-space
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density is a useful indicator of whether the state of the
field is classical or quantum mechanical in nature!'?
When ¢5(8) does not behave like a classical probablhty
density [ie., when ¢,(B) <0, the field mode b is in-
herently quantum mechanical in character and has no
classical counterpart. We express ¢5(8) as a complex
Fourier transform of the normally ordered characteristic
function &M (), 13

06(8) =72 [ 1D ()ens=s" g2, ®)
where §™ (5 is given by
2 () =(eb"ne ~7b), 6)

We express ¢5(B) in terms of the phase-space density
¢ala) of the incident-field mode & by substituting Eq
(3) for b in Eq. (5), normal ordering the expressxon in &,
and using the optical equivalence theorem!? to give the
following equation:

05(8) =|zv] _2f¢a(a)e—“ﬁ/")_“*lzdza. )

The right-hand side of Eq. (7) can be shown to be equal
to the matrix element ((8/v)*|p.|(B/V)*)/zlv]?,
which must always be positive semidefinite since p, is a
positive semidefinite operator. This result shows that
even for an incident field which may be in a pure quan-
tum state (e.g., amplitude or quadrature squeezed) the
phase-conjugate reflected field can always be described
classically. Hence, the desirable features of the initial
state, such as reduced quantum noise, will be lost in the
phase-conjugate process. This behavior is unlike that of
a normal phase-insensitive amplifier for which the
amplified field retains part of the quantum-mechanical
nature of the input field up to a particular value of the
gain.'* Our conclusion that the output light can always
be described classically holds whenever the Langevin
operator L possesses the properties described in the dis-
cussion following Eq. (3). For the case of a general
four-wave mixer,® the generated field can possess non-
classical features if the field injected through the rear in-
put port is nonclassical.

We now give two examples of particular states of the
input field and the resulting phase-space density for the
reflected field. We first consider the case in which the
input field is in the coherent state |a’), and consequently
the phase-space density is ¢,(az) =6*(a—a'). The in-
tegral in Eq. (7) then trivially reduces to the expression

o) =|zv] ~2expl— | (B—va™)/v| . €]

This distribution is similar to that which describes a
thermal light source, but is centered on an amplitude
with an expected value of 8 =va'™ and has a characteris-
tic spread equal to | v|. The next case we treat is one in
which the incident field is in a Fock state |n). The
phase-space density of this incident field has properties
unlike that of a probability density in that it contains

nth-order derivatives of a & function.!?> Nevertheless, the
phase-space density of the conjugate field is given by the
expression

¢f([3)=(7rfvlzn!)—llﬁ/vlz"e—‘ﬁ/"lz, 9

which has the form of a probability density. Thus, the
statistical properties of the reflected field can be de-
scribed classically.

We have also calculated the statistical fluctuations in
the number of photons contained in a mode of the
reflected field. Through use of Eq (3) for Eq. (7] we
calculate (Ay)=(5615) and (AAR) =(A2) —{#p)? and find
that the reflected-field mode always possesses super-
Poissonian statistics ((AA2) > (7)) even for input fields
that are sub-Poissonian (ar2 <{(Az)). The nature of
this increase in fluctuations can be understood by noting
that, according to Eq. (3), 4" and not & has effectively
become the relevant dynamical variable of the reflected
field. Mandel’® has shown that any quantum detector
that operatcs by means of stimulated emission (i.e., by
means of @ ") will be noisier than a detector that operates
by the more conventional method based on the absorp-
tion of photons (i.e., by mean of @). This noise can also
be considered to be a manifestation of the noise inherent
in all linear amplifiers”!% including those that are phase
conjugating.%!7

We next consider the case in which an aberrating
medium, which we model as a lossless scatterer, is placed
in front of the PCM. We consider the extent to which
the phase-conjugation process is capable of removing the
aberrations from the conjugate field after its return pas-
sage through the aberrator. The optical field is described
in terms of operators &; (/) and b; (5}), shown in Fig.
1, which respectively represent the forward- and
backward-traveling field modes on the left (right) of the
scatterer. We treat the lossless scatterer as a 2/N-port
network'® which couples the 2V spatial modes on each
side of the scatterer. The scattering process can then be
described by the following equations:

N N .
al= Zl tija;+ '21 rijb; (10a)
= i=
and
N . N
b=, tijbj+ 'Zl ri;d;j. (10b)
j=1 LJ=

- /Bi'

5; - —3 PCM
. d

5" -
scatterer

FIG. 1. An aberrating medium modeled as a lossless scatter-
er is placed in front of a PCM.
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Here t;; (t{;) describes the forward scattering of the jth
mode on the left-hand (right-hand) side of the scatterer
into the ith mode on the right-hand (left-hand) side of
the scatterer. Likewise, i (rjj) describes the backward
scattering of mode j into mode i on the left-hand (right-
hand) s1de of the scatterer We next adopt the vector no-
tation!® in which 4, &', &', 8", b, b, b', and " repre-
sent column vectors whosc zth elements are @, 4, 4,
&;’ . b,, b, , b,, and b, T, respectively. We can then express
Eqgs. (10) in the compact matrix form,

a' T R||a a
t’; R' T ﬁl SB:,

where T, T', R, and R’ are N XN matrices whose matrix
elements are given by 1, i, rij, Tij respectlvely The
scattering matrix S must be unitary (sst=s's= =1,

an

|

b=T'Ily— [ v|2R*R] '[vT*at+ | v| R*Ta+vR*LT+L]1+R 4

We see from this matrix equation that each element 5,- in
general contains not only a term proportional to al, as
would be desued for ideal phase conjugation, but also
terms like &; (for all j=i) and &; (for all j). It can be
seen by inspection that for the case in which only a single
mode i is excited at the input, the presence of the second
term in Eq. (13) degrades the quality of the phase-
conjugate signal, in that it leads to an output whose ex-
pectatlon value depends in part upon {d;) and not solely
upon (a, ). The other terms mentioned above can lead to
an increase in fluctuations in the reconstructed- field
mode b, However, there are two cases in which b is
simply proportional to at plus noise terms due solely to
the PCM. The first case is when there is no backscatter-
ing (ry; =r,», =0 for all / and j) so that Eq. (13) reduces
to b=va'+L and all the effects of the scatterer have

been removed. The second case occurs when |v| =1, so
that Eq. (13) simplifies to
p=at+(T*) " W(L+R*ePLT), (14)

where =argv. Thus, the condition that either vl =1
or rij=r{;=0, which within the context of the classical
theory implies that the phase conjugation occurs with
highest fidelity, is also the condition which within the
context of quantum theory implies that the scatterer does
not couple vacuum fluctuations into the reconstructed-
field mode. Our conclusions regarding fundamental lim-
itations to the aberration-correcting ability of phase con-
jugation are somewhat different from those reached by
Band, Heller, and Kafri,2® who conclude that the scatter-
er does introduce noise into the reconstructed beam.
Their calculation differs from ours in that they do not

explicitly treat the dynamics of the PCM and, hence, do _

not include the effects of noise introduced by the PCM.
However, they argue on the basis of thermodynamic
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where Iy is the 2N X2N identity matrix) since we have
assumed that the aberrator is lossless. We also assume
that the scatterer is symmetric such that the reciprocity
conditions become T'=TT, R=RT, and R'=R'T, where
superscript T denotes transpose. From these conditions
of unitarity and reciprocity, we derive the following ex-
pressions which completely specify the relationships be-
tween the 1, jj, ryj, and rjj:

TTT+RR =1y, (12a)

TTT+R'R =1y, (12b)
and

TR'T+RT =0. (12¢)

We apply Eq. (3) to each mode such that b'=va 'T+L
and use Eq. (11} to solve for the reconstructed field bin
terms of the input field operators and the PCM noise
operators:

(13)

reasoning that the entropy of the light field must increase
upon transit through an aberrator, and, since the entropy
cannot decrease in the second pass, the reconstructed
field will be imperfect in the sense that a certain
minimum number of photons will be scattered into other
field modes. In contrast, our calculation assumes a
deterministic madel for the aberrator, and for this reason
we have not included entropy considerations into our
treatment.

In the treatment presented here, we assume that the
PCM is ideal in the sense that all spatial modes are
reflected with the same phase-conjugate reflectivity v.
When v is not constant, perfect reconstruction of the
field cannot occur even in the limit of no backscattering,
and thus vacuum modes will then couple to the recon-
structed initially populated modes leading to additional
fluctuations. We have considered only single-frequency
operation of the PCM, but in practice the PCM will be
characterized by some nonzero bandwidth and v will be
frequency dependent. Since phase conjugation couples
modes in pairs (symmetrically displaced about the pump
frequency of the PCM), our treatment can be easily ex-
tended to include these modes by the introduction of a
frequency-dependent v. Even for the case in which the
applied input field is at a single frequency, the nonzero
bandwidth of the PCM implies that the field leaving the
PCM will contain noise photons at the other frequencies
which will contribute additional background noise.

In conclusion, we have shown that quantum noise im-
poses a fundamental limitation to the performance of
PCM’’s, especially when used with very weak input fields.
Our results potentially have important implications for
the use of phase conjugation for incident fields in non-
classical states, for the noise properties of the radiation
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produced by a phase-conjugate resonator,?! for the use
of phase conjugation for information processing,?? and
for the dynamics of atoms located in front of PCM’s. %
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