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Terahertz wave sensing and imaging have received a great deal
of attention because of their significant scientific and techno-
logical potential in multidisciplinary fields1–3. However, owing
to the challenge of dealing with high ambient moisture absorp-
tion, the development of remote open-air broadband terahertz
spectroscopy is lagging behind the urgent need for the technol-
ogy that exists in homeland security and the fields of astron-
omy and environmental monitoring3,4. The requirement for
on-site bias or forward collection of the optical signal in con-
ventional terahertz detection techniques has inevitably prohib-
ited their use in remote sensing5–7. We introduce an ‘all-optical’
technique of broadband terahertz wave detection by coherently
manipulating the fluorescence emission from asymmetrically
ionized gas plasma interacting with terahertz waves. Owing
to the high atmospheric transparency and omnidirectional
emission pattern of the fluorescence, this technique can be
used to measure terahertz pulses at standoff distances with
minimal water vapour absorption and unlimited directionality
for optical signal collection. We demonstrate coherent tera-
hertz wave detection at a distance of 10 m.

Photoconductive antennas5, electro-optic (EO) sampling6 and
terahertz air detection7 have been widely used in recent decades
for the detection of broadband terahertz radiation in an increasing
variety of applications including biomedical imaging, non-destruc-
tive inspection and material characterization1–3. In attempts to meet
the emerging needs of homeland security and environmental
science, a large amount of research effort has been directed at devel-
oping broadband remote terahertz spectroscopy. Focusing
two-colour optical beams remotely provides a solution for remote
terahertz wave generation8. However, the realization of broadband
terahertz remote sensing is even more challenging because of the
strong absorption of ambient water vapour in the terahertz band
and the difficulties inherent to remote optical signal collection.
Using a biased photoconductive antenna5 or EO crystal6 for tera-
hertz-wave remote sensing is not practical. In terahertz wave detec-
tion using a gas sensor7, the second-harmonic beam, generated from
a four-wave-mixing process involving the terahertz beam and the
fundamental laser beam, has to be measured in the forward direc-
tion, so collecting it is difficult at standoff distances due to
weak scattering.

Here, we report on an ‘all-optical’ technique for standoff (10-m)
broadband coherent terahertz wave detection by probing the tera-
hertz pulse with a fully controllable two-colour laser-induced gas
plasma and analysing the interaction by detecting the omnidirec-
tional fluorescence emission. The high transparency of UV fluor-
escence in the atmosphere can circumvent the sensing distance
limitation that arises due to strong water vapour absorption in the

terahertz region. Instead of being used for terahertz wave generation
as demonstrated in ref. 9, the two-colour laser field functions as a
remote ‘optical modulator’ for the terahertz radiation enhanced
emission of fluorescence (THz-REEF) signal through coherent
manipulation of the ionized electron drift velocity and subsequent
collision-induced fluorescence emission. We will further reveal the
complex physical picture of the light–plasma interaction by investi-
gating the relation between the fluorescence and the electron
momentum distribution. THz-REEF from gas plasma excited by
single-colour, multicycle laser pulses has been studied and demon-
strated for terahertz wave detection10. However, this method only
detects terahertz wave intensity, and not phase information, which
makes it non-ideal for remote sensing due to the requirement for
an on-site external electric bias to provide a local oscillator.
Unlike the inherently incoherent scheme in ref. 10, this technique
using symmetry-broken laser fields to control electron momentum
is inherently coherent and directly measures the terahertz field
ETHz(t) instead of the vector potential ATHz(t). The performance
of this technique regarding terahertz wave detection is one to two
orders better than that using bias as in ref. 10 due to the larger
modulation of the electron momentum and elimination of noise
induced by the derivative relation ETHz(t)¼ dATHz(t)/dt.
Furthermore, this technique circumvents the limitations of the
on-site bias requirement, water vapour attenuation and signal-col-
lection direction at standoff distances. By applying this technique
we have realized the detection of broadband terahertz radiation
from a distance of 10 m.

Figure 1 presents a schematic of experiments on terahertz wave
remote sensing, using coherent manipulation of terahertz wave
enhanced fluorescence from asymmetrically ionized gas. The two-
colour laser beam with parallel polarization was focused into air
to generate plasma, with the relative phase being controlled by an
in-line phase compensator9. A single-cycle terahertz pulse with a
peak field of 100 kV cm21 was focused collinearly with the optical
beam onto the plasma. The shaded area in Fig. 1 shows the fluor-
escence detection system, which has translational mobility on a
horizontal plane. The fluorescence emitted from the two-colour
laser-induced plasma was collected by a rotatable UV-enhanced
concave mirror (M1) with a diameter of 200 mm and focal length
of 500 mm, and was then guided by another UV plane mirror
(M2) with a diameter of 75 mm through a monochromator into a
photomultiplier tube (PMT). Terahertz wave sensing was performed
as the distance between the plasma and fluorescence detection
system was varied.

In the laser-induced ionization processes, electrons newly
released from molecules or atoms acquire a constant drift velocity
after passage of the laser pulse11. The drift velocity is determined
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by the phase of the laser field at the birth of the free electron.
Residual current density or asymmetric electron velocity distri-
bution could remain in the plasma, ionized by single-colour few-
cycle pulses12 or by two-colour fields with optimized relative
phase13,14. Under irradiation from intense laser pulses, some of
the excited electrons are trapped in high-lying states of atoms and
molecules15–18. Those trapped states have a large principal
quantum number (n ≫ 1) and are more easily ionized by collision
with energetic electrons19–21, as illustrated in Fig. 2a. The interaction
of laser-induced plasma with a terahertz wave leads to an increase in
plasma temperature through electron acceleration. Electron impact
produces more ionized gas species and subsequently generates
more N2(C3Pp) through dissociative recombination22. In single-

colour, multicycle laser pulse excitation, which results in a sym-
metric electron drift velocity distribution, THz-REEF from nitrogen
plasma is quadratically dependent on the terahertz field10. Similar
phenomena were also observed in argon, krypton and xenon
gas plasmas.

Contrarily, the synthesized optical field of two-colour pulses gen-
erates ionized electrons with an asymmetric drift velocity. The drift
velocity distribution and electron trajectories can be controlled by
the polarizations and relative phase of two optical fields fv,2v
(refs 9,23). After the passage of two-colour pulses, the electric
field of a single-cycle terahertz pulse applied to the laser-induced
plasma alters the ionized electron momentum by acceleration or
deceleration, depending on the electron initial velocity v(0) (see
Fig. 2b). Because both the amplitude and direction of the terahertz
field affect plasma fluorescence, the terahertz waveform information
is encoded into a change of fluorescence at a different time delay td
between the terahertz pulse and the optical pulses. We demonstrate
that a terahertz waveform can be retrieved by measuring time-
dependent fluorescence emission when v(0) is aligned both parallel
and antiparallel to ETHz(t).

Fluorescence intensities at different Dfv,2v were recorded as the
time delay td between the external terahertz pulse and the two over-
lapping optical pulses was changed. The sliced, individual, time-
delay-dependent THz-REEF DIFL(td,+(2lþ 1)p/2) for the same
external terahertz pulse and optical intensity is presented in
Fig. 3a. The ionized electron velocity distribution r(v(0),Dfv,2v)
is strongly asymmetric at the phase generating the largest photocur-
rent (relative phase change Dfv,2v¼+(2lþ 1)p/2), but almost
symmetric at the phase generating the smallest photocurrent
(Dfv,2v¼+lp) (refs13,24). The different shapes of DIFL(td,Dfv,2v)
indicate how the initial electron drift velocity distribution
r(ve,Dfv,2v) affects electron heating by the terahertz field and
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Figure 1 | Schematic of the terahertz wave remote sensing technique. The 2v pulse is generated by passing the fundamental beam through a type I b-BBO

crystal. Both the fundamental and second-harmonic optical pulses are linearly polarized along a vertical direction. The relative phase change between the v

and 2v pulses is tuned by the lateral translation of fused silica wedges in the optical beam path after the a-BBO. The two optical pulses are focused by a

parabolic mirror (effective focal length, 150 mm) into air to generate plasma. The time delay td is defined as the delay between the optical pulse peak and

terahertz pulse peak. The fluorescence detection system consists of a UV concave mirror (M1; diameter, 200 mm and focal length, 500 mm), a UV plane

mirror (M2), a monochromator and a photomultiplier tube (PMT). The distance of remote sensing is varied by moving the fluorescence detection system

with respect to the plasma. DWP, dual-band waveplate.
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energy transfer in the electron–molecule inelastic collision.
DIFL(td,p/2) and DIFL(td, 2 p/2) are found to be symmetric
around DIFL(td,0), as shown in Fig. 3b (top).

Information about the time-dependent terahertz field can be
directly retrieved by taking the differential between DIFL(Dfv,2v¼
p/2) and DIFL(Dfv,2v¼2p/2). The terahertz waveform obtained
by differentiation was compared to the terahertz waveform
measured with a 300-mm k110 l GaP crystal by EO sampling6, as
shown in Fig. 3b (middle). Using the semiclassical model, we simu-
lated THz-REEF at different phases by calculating the interaction
between the terahertz pulse shown in Fig. 3b (bottom) and two-
colour ionized plasma. The calculated phase dependence agrees
well with the measurements and provides a descriptive framework
underpinning the primary experimental observation.

To demonstrate its capability in broadband, high-resolution, tera-
hertz time-domain spectroscopy, THz-REEF was used to measure
terahertz waveforms in ambient air and a relative humidity of
30% (Fig. 3c). An oscillatory feature after the main peaks due to
water vapour absorption is clearly shown in the measured terahertz
waveform in ambient air when compared with a reference waveform
measured when the entire optical system except the fluorescence
detection module was purged with dry nitrogen gas. Figure 3d
plots the corresponding spectra, in which sharp absorption lines
of water molecules can be well resolved, these line positions being
consistent with previous measurement results25. We also measured
the absorption spectrum of a 4-amino-2,6-dinitrotoluene (4A-DNT)
pellet sample and compared this with the results obtained using
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EO sampling. The transmission spectroscopic results measured by
the two methods (plotted in Fig. 3e) show good agreement.

The standoff terahertz wave sensing capability of this method
was tested by measuring the terahertz waveform carried by UV flu-
orescence (357 nm) when the fluorescence detection system was
placed at distances of 0.1, 5 and 10 m away from terahertz source/
plasma at a detection angle of 908. Figure 4 shows that the waveforms
measured by REEF are consistent with that measured by EO.
Despite the decreased fluorescence collection efficiency and
the reduced signal-to-noise ratio as the distance increases,
the remote sensing system can clearly resolve the terahertz spectrum
at a distance of 10 m. The water vapour absorption present in the
spectrum is due to the short-distance (�30 cm) propagation of
the terahertz wave from the local terahertz source to the plasma.

In conclusion, we have introduced a technique for standoff
terahertz wave detection using the intrinsic physical properties
of THz-REEF from two-colour laser-induced gas plasma. The
time-dependent THz-REEF can be modified by changing the
relative phase of the two-colour fields and their polarizations,
providing a unique approach to detecting the amplitude and
phase of terahertz waves. With its omnidirectional emission
pattern and minimal ambient water vapour absorption, this tech-
nique, together with the previously demonstrated long-distance
terahertz wave generation, makes broadband standoff terahertz
spectroscopy feasible8,26.

Methods
Experimental details. The THz-REEF experiment with gas plasma excited by
two-colour laser fields, superposition of a linearly polarized fundamental pulse Ev

and its second-harmonic pulse E2v was created by propagating a 80-fs, 100-mJ,
800-nm laser pulse through a 250-mm type-I beta-barium borate (b-BBO). The
relative phase, fv,2v , was controlled by an in-line phase compensator consisting of
an alpha-barium borate (a-BBO) time plate, a pair of fused silica wedges, and a dual
wavelength plate (DWP, Alphalas GmbH), with attosecond phase-control accuracy9.
The two-colour laser beam was focused into air to generate plasma. The two optical
intensities at the focus were Iv (�1013 2 1014 W cm22) for the fundamental beam,
and I2v (¼Iv/10) for the second-harmonic beam, respectively. The Ev direction
could be changed by rotating the DWP while keeping the E2v direction unchanged.
To create an asymmetric electron drift velocity, Ev and E2v were aligned parallel. The
synthesized optical field EOpt can be expressed as

EOpt(t) = Ev(t) + E2v(t) = Av0(t) cos(vt)

+ A2v0(t) cos(2vt + fv,2v)
(1)

Where Av0(t) and A2v0(t) are the envelopes of fundamental (frequency v) and
second-harmonic (frequency 2v) pulses, respectively. For the conceptual
demonstration of terahertz wave remote sensing, a single-cycle terahertz pulse
ETHz(t) with a peak field of 100 kV cm21 was generated locally from a LiNbO3 prism
using an optical pulse with a tilted pulse front as the excitation27 and was focused
collinearly with the optical beam onto the plasma.

Two-colour phase dependence of electron velocity distribution. The phase
dependence of the ionized electron velocity distribution was measured by
monitoring the intensity of the plasma-photocurrent-induced terahertz wave
emission, I THz

pla and the fluorescence intensity radiated from the two-colour excited
plasma, IFL. In this measurement, the external terahertz pulse from LiNbO3 was
blocked to eliminate any interaction between the plasma and other terahertz sources.
ITHz

pla was measured using a pyroelectric detector in the forward direction after
filtering out the v and 2v pulses. IFL was measured by a monochromator and the
photomultiple tube (PMT), as shown in Fig. 1. The monochromator was set to pass
through only the strongest molecular nitrogen emission line at 357 nm. When two
optical pulses were overlapped and interfered with one another in the time domain,
the fluorescence emission was enhanced by 50% compared to that generated by two
temporally separated pulses. Figure 5a shows the measurement results in
comparison with the numerically calculated phase dependences of ITHz

pla and total ion
yield N2

þ by using the general Ammosov–Delone–Krainov (ADK) tunnelling
ionization model28 and tracing the ionized electron motion14. For the intensity
regime of interest here, both the measured and calculated results show that ITHz

pla and
the N2

þ yield have the same periodic dependence on the relative phase change
Dfv,2v (Fig. 5b). The velocity distribution is a periodic function; that is,
r(v(0),Dfv,2v) = r(−v(0),Dfv,2v + p). The ionized electron velocity distribution
r(v(0),Dfv,2v) is strongly asymmetric at the phase generating the largest
photocurrent (Dfv,2v¼+(2lþ 1)p/2 in Fig. 5b) but almost symmetric at the phase
generating the smallest photocurrent (Dfv,2v¼+lp in Fig. 5b)13,24.

Calculation of two-colour phase dependence of REEF. To interpret the observed
phase dependence of DIFL, we used the semiclassical scenario of electron heating by
a terahertz wave, electron–molecule energy transfer and ionization of the high-lying
states. Because the electron mass me is much smaller than the molecular mass, the
average energy transferred from electrons to molecules in each collision is
(2me/M)mev2

i /2 and is of the order of meV at an electron temperature of 1 × 105 K
(ref. 29). Owing to the quasi-continuum nature of the spectra of the high-lying
states, those states can be promoted ‘incrementally’ by many collisions until they are
ionized. The total enhanced fluorescence emission due to energy transfer in a long
time limit can be expressed as

DIFL(Dfv,2v)/ ne

∫+1

−1

(mev2(0) + 2mev(0)Dv1)
[

×r(v(0),Dfv,2v)dv(0)/2 + me

∑1

i=1

Dv2
i

]
(2)

where ne is the electron density and Dvi = −
�ti

ti−t
eETHz(t)dt/me. The mev2(0)

term is the energy transferred from the initial electron kinetic energy depending on
laser intensity. The ETHz first-order term, 2mev(0)Dv1, originates from
acceleration before the first collision. The ETHz second-order term, me

∑1
i=1 Dv2

i , is
the energy transferred from the external terahertz field. Applying the symmetry
r(ve,p/2) = r(−ve,−p/2) to equation (2) gives

DIFL(Dfv,2v = p/2) − DIFL(Dfv,2v = 0)
= −[DIFL(Dfv,2v = −p/2) − DIFL(Dfv,2v = 0)]
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As electron relaxation time t (�350 fs; ref. 30) at atmospheric pressure is small
compared to the terahertz pulse cycle (�1.5 ps), the terahertz field can be considered
nearly constant between neighbouring collisions. The information about the time-
dependent terahertz field can be directly retrieved by taking the differential between
DIFL(Dfv,2v¼ p/2) and DIFL(Dfv,2v¼2p/2):

DIFL(Dfv,2v = −p/2) − DIFL(Dfv,2v = p/2)
/ ner(ve, 0)etve(0)ETHz / ETHz (3)

Sample preparation. The 4A-DNT sample used in terahertz spectroscopy was a
0.5-mm-thick pellet consisting of 20% 4A-DNT and 80% polyethylene. All the
sample constituents were gently ground to powder and compressed into a pellet
using 5 tons of pressure from a hydraulic press. The sample was placed in the path
of the terahertz beam before the parabolic mirror focusing the terahertz beam.
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